

Home Search Collections Journals About Contact us My IOPscience

Photoemission spectroscopy and x-ray absorption spectroscopy studies of double perovskite oxides: $Ba_{2-x}La_xFeMoO_6$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys.: Condens. Matter 16 S5685 (http://iopscience.iop.org/0953-8984/16/48/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 19:19

Please note that terms and conditions apply.

PII: S0953-8984(04)79151-1

Photoemission spectroscopy and x-ray absorption spectroscopy studies of double perovskite oxides: $Ba_{2-x}La_xFeMoO_6$

J-S Kang^{1,6}, S C Wi¹, S S Lee¹, G Kim¹, H M Yang², B W Lee², S W Han³, K H Kim³, A Sekiyama⁴, S Kasai⁴, S Suga⁴, J H Shim⁵ and B I Min⁵

¹ Department of Physics, The Catholic University of Korea, Puchon 420-743, Korea

² Department of Physics, HUFS, Yongin 449-791, Korea

³ Department of Physics, Gyeongsang National University, Chinju 660-701, Korea

⁴ Department of Material Physics, Osaka University, Osaka 560-8531, Japan

⁵ Department of Physics, POSTECH, Pohang 790-784, Korea

E-mail: kangjs@catholic.ac.kr

Received 11 April 2004 Published 19 November 2004 Online at stacks.iop.org/JPhysCM/16/S5685 doi:10.1088/0953-8984/16/48/027

Abstract

Electronic structures of La-doped Ba₂FeMoO₆ double perovskite oxides have been investigated using photoemission spectroscopy and soft x-ray absorption spectroscopy. The ground states of Ba_{2-x}La_xFeMoO₆ are found to be in the Fe²⁺-Fe³⁺ mixed-valent states and the Fe valence state increases toward 3+ with increasing x. The states close to E_F consist of the degenerate Mo–Fe t_{2g}↓ states. The LSDA + U calculations for Ba_{2-x}La_xFeMoO₆ (x = 0, 1) show a larger occupied bandwidth of the Mo t_{2g}↓ states for x = 1 than for x = 0, which is consistent with the higher T_C value predicted in a type of the double exchange mechanism.

Large magnetoresistance (MR) has been observed in the ordered double-perovskite oxides of A₂FeMoO₆ (A = Sr, Ba) with the very high magnetic transition temperature T_C (\simeq 330–450 K) [1]. A metal–insulator transition occurs simultaneously with the ferromagnetic transition in A₂FeMoO₆. Magnetization data for Sr₂FeMoO₆ indicated the ferrimagnetic coupling between Fe³⁺ and Mo⁵⁺ ions, and large MR was interpreted as being due to intergrain tunnelling with the half-metallic electronic structure. When La³⁺ ions were substituted for Ba²⁺ ions in Ba₂FeMoO₆, T_C was enhanced significantly [2]. The substitution of La³⁺ in Ba_{2-x}La_xFeMoO₆ has two effects: (i) the reduction of the average ionic radius without distorting the cubic symmetry, and (ii) the change of the valence states and magnetic moments of Fe/Mo ions via electron doping. The exact mechanism of the enhanced T_C with increasing x in Ba_{2-x}La_xFeMoO₆ has not been clarified yet.

0953-8984/04/485685+04\$30.00 © 2004 IOP Publishing Ltd Printed in the UK

S5685

⁶ Author to whom any correspondence should be addressed.

Figure 1. Left: the measured Fe $2p_{3/2}$ XAS spectra (dots) of Sr₂FeMoO₆ (shifted by -0.35 eV) and Ba₂FeMoO₆, and the fitting results (solid curves). Right: comparison of the Fe 2p XAS spectra of Ba_{2-x}La_xFeMoO₆ (x = 0, 0.2, 0.5).

In order to understand the origin of the enhanced $T_{\rm C}$ in Ba_{2-x}La_xFeMoO₆, it is essential to investigate the valence and spin states of the constituent elements. Photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS) are the powerful methods that provide information on the electronic structures and the valence states. In this work we have investigated the electronic structures of A₂FeMoO₆ (A = Sr, Ba) and Ba_{2-x}La_xFeMoO₆ using PES and XAS.

Polycrystalline Ba_{2-x}La_xFeMoO₆ (x = 0, 0.2, 0.5) samples were prepared by the standard solid-state reaction method [2]. The measured XRD patterns showed single-phase perovskite structure without traces of impurity phases. $T_{\rm C}$ was enhanced from 316 K for x = 0 to 336 K for x = 0.5. The magnitude of $M_{\rm s}$ decreased systematically with increasing x. High-resolution PES and XAS experiments were performed at the twin-helical undulator beam line BL25SU of SPring-8 [3]. Samples were fractured and measured in vacuum better than 3×10^{-10} Torr at $T \leq 20$ K, and the overall energy resolution of the system was about 130 meV at a photon energy ($h\nu$) ~700 eV for PES data and better than 100 meV for XAS data.

The left of figure 1 presents the measured Fe 2p XAS spectra of Sr₂FeMoO₆ and Ba₂FeMoO₆ along with the calculated spectra. The calculated XAS spectra were obtained by employing the configuration interaction (CI) cluster model [4]. In this analysis, we have considered two configurations, d^n and $d^{n+1}L^1$ (L: a ligand hole). The $2p_{3/2}$ XAS spectra of both Sr₂FeMoO₆ and Ba₂FeMoO₆ exhibit two-peak structures. It is known that the $2p_{3/2}$ absorption edge of Fe²⁺ ions in the octahedral (O_h) symmetry exhibits a main peak at a lower $h\nu$ than that of Fe³⁺ ions [5]. We have used the same parameters as used for FeO and α -Fe₂O₃ for the Fe²⁺ (d⁶) and Fe³⁺ (d⁵) components, respectively [5]. The calculated XAS spectra (solid curves) reveal that the ground states of both Sr₂FeMoO₆ and Ba₂FeMoO₆ are strongly mixed-valent with the Fe²⁺ and Fe³⁺ configurations. The estimated Fe valences are about 2.5 for Sr₂FeMoO₆ and 2.3 for Ba₂FeMoO₆.

The right of figure 1 compares the Fe 2p XAS spectra of $Ba_{2-x}La_xFeMoO_6$ (x = 0, 0.2, 0.5). As x increases, the peak at a higher $h\nu$ (B: ~710 eV) increases, compared to that at a lower $h\nu$ (A: $h\nu \sim 708$ eV). The trend in the measured Fe 2p XAS spectra of $Ba_{2-x}La_xFeMoO_6$ indicates that Fe ions are in the Fe²⁺-Fe³⁺ mixed-valent states, and that their valences increase toward 3+ with increasing x.

Figure 2. Left, top: the valence-band PES spectrum, combined with the O 1s XAS spectrum of Ba₂FeMoO₆ (shifted by -528.4 eV); bottom: schematic diagram for the PDOS (partial density of states) of Ba₂FeMoO₆. Right: comparison of the calculated PDOS of Ba_{2-x}La_xFeMoO₆ (x = 0, 1) obtained by using the LSDA + U method.

The left of figure 2 shows the combined valence-band PES and O 1s XAS spectra of Ba_2FeMoO_6 . The O 1s XAS spectrum provides a reasonable approximation for the unoccupied conduction bands via hybridization to the other electronic states. A metallic Fermi edge is observed in the valence-band PES spectrum, consistent with its metallic behaviour at low *T*. Based on a comparison of the measured PES/XAS spectra to the LSDA + *U* calculation, we provide a schematic diagram for the partial density of states (PDOS) at the bottom. Fe $t_{2g}\downarrow$ and Mo $t_{2g}\downarrow$ bands are almost degenerate and t_{2g} electrons are itinerant in Ba_2FeMoO_6 . Consequently, Fe and Mo ions do not have definite valence states. This suggests that two valence states of Fe³⁺–Mo⁵⁺ and Fe²⁺–Mo⁶⁺ are degenerate in Ba_2FeMoO_6 , which would then produce a type of double-exchange (DE) interaction [6].

The right of figure 2 shows the calculated PDOS of Ba_{2-x}La_xFeMoO₆ (x = 0, 1) obtained from the LSDA + U calculations. The parameters used in this calculation are U = 3.0 eV and the exchange J = 0.97 eV for Fe 3d electrons. Both of the calculated electronic structures for x = 0 and 1 seem to show the half-metallic nature. But LaBaFeMoO₆ is not a complete half-metal, since a very small majority-spin DOS exists at E_F , which is mostly from the La 5d PDOS. Spins of the Fe and Mo ions are polarized antiferromagnetically. The calculated magnetic moments for Fe and Mo are 4.03 μ_B and $-0.46 \mu_B$ for x = 0 and 4.09 μ_B and $-1.11 \mu_B$ for x = 1, so that the total magnetic moments of 4.00 μ_B (x = 0) and $-3.01 \mu_B$ (x = 1) per formula unit are obtained.

La-doping has the effect of electron doping. This would cause the rigid-band shift of E_F upward, corresponding to the downward shift of PDOS. The largest effect of La-doping is the larger occupied bandwidth of the Mo $t_{2g}\downarrow$ states. Note that, in the simplest DE Hamiltonian, T_C is proportional to the kinetic energy of the itinerant carriers [7]. Accordingly, T_C would be proportional to the occupied bandwidth for the low carrier concentration. Therefore the increased occupied bandwidth of the Mo $t_{2g}\downarrow$ states with La-doping is consistent with the DE mechanism. On the other hand, according to the LSDA+U calculation, the Fe valence states in

Figure 3. Comparison of the valence-band PES spectra of $Ba_{2-x}La_xFeMoO_6$ (x = 0, 0.5) for $hv \approx 705$ eV.

 $Ba_{2-x}La_x FeMoO_6$ do not change much, contradictory to the experimental finding in figure 1. This problem needs to be resolved both theoretically and experimentally. Finally La-doping will increase the DOS at E_F [N(E_F)] since the Mo $t_{2g}\downarrow$ states have the largest contribution to N(E_F) in $Ba_{2-x}La_x FeMoO_6$.

Figure 3 compares the valence-band PES spectra of $Ba_{2-x}La_xFeMoO_6$ (x = 0, 0.5) near the off-resonance energy ($h\nu \approx 705 \text{ eV}$) in Fe 2p \rightarrow 3d resonant PES. At this $h\nu$, the Mo d emission is relatively large [3]. This comparison shows that the trend in the measured PES spectra is consistent with that in the calculated PDOSs. That is, the occupied bandwidth near E_F , i.e. that of the Mo–Fe $t_{2g}\downarrow$ states, becomes slightly wider for x = 0.5 than for x = 0. However, to confirm the predicted larger occupied bandwidth of the Mo $t_{2g}\downarrow$ states, a more systematic high-resolution PES study for $Ba_{2-x}La_xFeMoO_6$ with different x values will be necessary.

In conclusion, electronic structures of $Ba_{2-x}La_xFeMoO_6$ have been investigated by using PES and XAS. The Fe 2p XAS spectra show that the ground states of $Ba_{2-x}La_xFeMoO_6$ are in the Fe²⁺–Fe³⁺ mixed-valent states, and that the Fe valence increases toward 3+ with increasing x. Valence-band PES spectra reveal that the states close to E_F have the Mo–Fe $t_{2g}\downarrow$ character, and that the degenerate Mo–Fe $t_{2g}\downarrow$ states are itinerant. The LSDA + U calculations for $Ba_{2-x}La_xFeMoO_6$ (x = 0, 1) show the higher occupied bandwidth of the Mo $t_{2g}\downarrow$ states for x = 1 than for x = 0, which is consistent with the measured PES data for x = 0 and 0.5. These findings suggest that a type of DE interaction is operative in $Ba_{2-x}La_xFeMoO_6$ to enhance T_C with increasing x.

Acknowledgments

This work was supported by the KRF (2002-070-C00038) and by the KOSEF through the CSCMR at SNU and the eSSC at POSTECH. PES and XAS experiments were performed at the SPring-8 which is supported by JASRI.

References

- [1] Kobayashi K-I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
- [2] Yang H M, Lee W Y, Han H, Lee B W and Kim C S 2003 J. Appl. Phys. 93 6987
- [3] Kang J-S, Kim J H, Sekiyama A, Kasai S, Suga S, Han S W, Kim K H, Muro T, Saitoh Y, Hwang C, Olson C G, Park B J, Lee B W, Shim J H, Park J H and Min B I 2002 Phys. Rev. B 66 113105
- [4] de Creat E M E Erecela I C. Thala D T and Constalar C. A 1000 Plan. P. D. D 42 54
- [4] de Groot F M F, Fuggle J C, Thole B T and Sawatzky G A 1990 *Phys. Rev.* B **42** 5459
- [5] Crocombette J P, Pollak M, Jollet F, Thromat N and Gautier-Soyer M 1995 *Phys. Rev.* B **52** 3143
 [6] Sleight A W and Weiher J F 1972 *J. Phys. Chem. Solids* **33** 679
- [7] Kuba K and Ohata N 1072 J. Dhua Saa Janar 22 21